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Let  ~2 be a domain in R 3 containing the origin and bounded by the smooth surface S with unit external 
normal  vector  n. The vector  field v, smooth in the class  C 1 in ~2 and continuous in ~ for which 

rotv ----- ~v; (1) 

V-his = 0 (2) 

(X = const  ~ 0), is  called a homogeneous helical flow. F r o m  (1) we obtain div v--0,  hence, ro t  ro t  v =--AV = X2V, 
and the Car tes ian  components of the field v should be analytic functions in ~2. In par t icular ,  v decomposes into 
the Taylor se r ies  

r 

v = ~ vp,. (3)  
p : O  

which converges uniformly in some neighborhood of the or igin.  Here each Vp is a homogeneous polynomial 
vec tor  field of degree p and divergence zero.  The following lemmas descr ibe  the connection of the fields Vp to 
the harmonic polynomials :  

LEMMA 1. If H n is a homogeneous harmonic  polynomial  of degree n, then there exists a sequence {Vs, n~ 
(s = 0, 1 ,  2...) of  homogeneous polynomial  fields (deg v s, n = n + s -  1) sat isfying the conditions 

v0,~ = grad H~; (4) 

r o t v s , .  = v ~ - 1 ,  n as s ~ t .  (5) 

Proof.  Let  us give Vs, n by the formulas  

v*.k.n ---- Ckar~-~[( n "t- 2k ~, t)r ~ grad HA - -  2knHnr ]; 

where 

V 2 k §  n ----- Chn r2h grad [ I  n • r, 

r ~ + T )  (_,)k {z, z}; r~=x~+ 
Can= ; r = y~ y2~_z2. 

n - ~ t  22ak l r (n~_k§  

(6) 

(7) 

(8) 

The proper ty  (5) is verif ied by using standard vector  analysis  formulas and The proper ty  (4) is evident. 
the formula  

rot (vp x r) -- (p -}- 2)vp --  r div vp, 

which is valid for a homogeneous vector  field Vp of degree p and obtained f rom the formula 

rot (Vp • r) ---- (r~ V)Vp - -  (vp, v ) r  -t-vp div r - -  r div Vps 

taking into account  that (r, V)Vp=pVp (the Euler  theorem about homogeneous functions), (Vp, V)r =Vp, div r = 3 .  

LEMMA 2. For  any field v sat isfying (1) and having the Taylor expansion (3), there exists a sequence 
{Hn} (n = 1, 2, 3, ...) of homogeneous harmonic  polynomials of deg Hn=n,  such that for all p 

p+l ~,P--~+~v (9) 

where Vp_n+ 1 ,n is the field constructed by means of H n because of Lemma l.  

Proof.  For  p=0  we have v0=grad H t =v0,1, where  the linear fo rm H 1 is defined uniquely. Let Hn be 
defined for 1-< n -  < p+ 1 and let (9) hold. Let us define Hp+ 2 so that the equality (9) would be satisfied by 
replac ing p by p+ 1. Because of the uniqueness of the Taylor  expansion we have 
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p+l 
r o t v p + l = X v p  = ~ ~v-n+2vv_n+~,~. 

n = |  

Then according to Lemma 1 

, p+t ) 
rot (Yp-{-1 - -  n~!Z ~'P--n+2Vp--n-t-2, , n  = ~ V p  - -  ~,Vp -~- O, 

p+ t  
hence vp+~ ~ ~p-n+2 - -  ,~ vv_~+. ~ = grad Hp+~, w h e r e  the  p o l y n o m i a l  Hp+ 2 is def ined  un ique ly  by  the  r e q u i r e m e n t  

o f  h o m o g e n e i t y .  We have  

' p+ t  ) 

AHp+ 2 = div (Vp+l - -  n=t ~ ~f--n+2vr-n+2'~ ----- 0, 

P+2 
hence ,  the p o l y n o m i a l  Hp+ 2 is  h a r m o n i c ,  and we can  s e t  Vo,p+z=grad Hp+2, f r o m  which vp+~ = ~ ~v-n+2. �9 v Vp._n+2, n. 

The l e m m a  is  p r o v e d .  

F o r  e a c h  n l e t  us  de f ine  the  v e c t o r  f i e ld  

~ ( l o )  
v(n) ~ E SV 

w h e r e  Vs, n is  the f i e l d  c o n s t r u c t e d  in L e m m a  1 by  m e a n s  of  the h a r m o n i c  p o l y n o m i a l  H n f r o m  L e m m a  2. 
F o r m u l a  (8) for  Ckn shows  tha t  the s e r i e s  (10) c o n v e r g e s  u n i f o r m l y  for  a l l  r .  This  s e r i e s  can  be  d i f f e r e n t i a t e d  
t e r m  by t e r m ,  and hence  r o t  v (n) = Xv(n), and v (n) can  be e v a l u a t e d  e x p l i c i t l y .  To do t h i s ,  we note  tha t  v (n) = 
v(+ n) + v  [n), w h e r e  the Components  a r e  the " even"  and "odd" p a r t s  of  v (n) c o r r e s p o n d i n g  to (6) and (7): 

h=O h=O 

w h e r e  v(+ n) = X-1 r o t  v (n)_ so tha t  i t  is  su f f i c i en t  to f ind v(n)._ It fo l lows f r o m  (7) and (8) tha t  

/ ~.r \2~ (11) Z r ( n +  23---" ) (_ t )h  [ T )  gradHn•  =Anr-n_I/2jn~_i/,~(Lr)gradHn• 
h=o k!F ~ 3 ' - 

w h o r e  A n = l (n  + 1 ) - l F ( n  + 3/2) ; Jn+l/~(kr) is  the  B e s s e l  funct ion .  

L e t  S~ c ~ be a s p h e r e  of  r a d i u s  r with c e n t e r  a t  the o r i g i n .  L e t  us show tha t  

.i v.rtI~dS = .f vl~l. rH~dS. 
Sr S r 

To do this  we e x a m i n e  the  p a r t i a l  s u m  S m of the  s e r i e s  (3). By v i r t u e  of L e m m a  2 

m p + l  m+l  m m + i  m - - n + t  

p=0 P=0 n=l  n=-I p = n - - I  n= i  s=O 

w h e r e  S(mn)n+ 1 is the p a r t i a l  s u m  of the s e r i e s  (10). We have  

m+ I m+ 1 
Sm.r = ~" .:~0 "V S ...... ~-l'r = ,.~ fra-.~t(r) Hn, 

m+l 
= E, S(~2~-~+~, 

(12) 

where fm_n+i(r) are polynomials whose explicit form can be extracted from (6). From the last equality and 

the orthogonality of the spherical functions of different orders there follows that for m_> n- i 

y S,, .rII,,ds =/,,-,~+1 (r)j" lI;~ ds= .f S~Ln+I" rH~dS. (13) 
Sr b r S r 

L e t  r < ~, w h e r e  a is  the r a d i u s  of  a s p h e r e  in which the s e r i e s  (3) c o n v e r g e s  u n i f o r m l y .  Then i t  is  p o s s i -  
b l e  to p a s s  to the l i m i t  a s  m ~  u n d e r  the  i n t e g r a l  s i gn  in both s i d e s  of  (13), and (12) is  p r o v e d  for  r < e. 
S ince  both s i d e s  of  th is  e q u a l i t y  a r e  a n a l y t i c  func t ions  of  r ,  then  i t  is  t r u e  for  a l l  r for  which S~ ~; ~. 

Now, l e t  ~ be a s p h e r e  of r a d i u s  R with c e n t e r  a t  the o r i g i n .  By con t inu i ty ,  ( 1 2 ) i s  s a t i s f i e d  even  for  
r =R ,  w h e r e  i t  fo l lows  f r o m  (2) tha t  both i t s  s i d e s  e q u a l  z e r o .  L e t  n be  the f i r s t  n u m b e r  for  which  H n ~ 0. We 
have  
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since v (n) " r  = 0 by v i r tue  of (11). 
by using (11) 

vr = (v~ '  + ~ ' ) .  r = v~) .r ,  

Fur the rmore ,  v~n) ' r = h -1 ro t  v(n) �9 r = k -1 div(v(n) x r ) ,  f rom which we obtain 

The equality (12) becomes 

v ~ - ) . r : n r ( n ~  3)r-n-I/2Ja+i/~(~r)Hn. 

3 --n--l/2 
(14) 

f r om  which Jn+~(kR)= 0 and x=4n)R-1  , where 4 n} is the k-th roo t  of the function Jn+l/2(z). 

Now let m> n. Since Jn+~h(z) and Jm+~/2(z) have no common ze roes ,  then f rom an equality analogous to 
(14) with n rep laced  by m, we obtain ~ H~ds = 0, f rom which H m = 0 for all  ~ # n. Summarizing,  v = v (n), and 

B 

the following theorem is proved:  

THEOREM. Eve ry  homogeneous hel ical  flow in a sphere  of radius  R has the fo rm v=v~ n) +v(n), where 
v[ n) is given by (11) for  ~= g(kn)R -1, v(+ n) = [#(kn)] -1 R r o t  v(n), andH n is an a r b i t r a r y  homogeneous harmonic poly-  
nomial of degree  n. In par t icu lar ,  2n+ 1 l inear ly  independent hel ical  flows cor respond to each value of k = 
n)R-i" 

Remark I. When H n possesses axial symmetry, the solutions obtained are known (see [i], for instance). 
If n = I, then symmetry relative to the axis given by the vector grad H I automatically holds. The streamline 
pattern in the meridian section is represented in [2] for n = k = i. 

Remark 2. Let 
=rP~(cosO)cosm~ at O<~m~n, 

H,? ---- r~P'~ m' (cos 0) sin I m I ~ at -- ~ <~ ~ < 0. 

It can be shown that the family of vector fields ~v (n) v(n)l for all nossible n k> 1 Iml<~ k--,,(n)R -i H -H m 
[ + �9 _ j v ' -~'' '-'" .~k , n- n 

is the orthogonal basis in the space j0l~) [3]. The proper basis of the operator A from [3] in t[/e sphere ~2 is 
(n) (n) (n) f r a (n) 1 a lso associa ted with the fields v~ and v_ . It is formed by the fields v_ o ll possible n, k, m, k=/~k R- 

and the fields 

3 ~ r~--n--l/2 r v~- (~) ---- v~ ) -- F (n ~- 7] 1~ Jn+l/~ (~t(~ ~+l)) grad g ~  

for al l  possible n, k, m, k=#~n+l)R -1. Here  v (n) cor responds  to the eigenvalue v[p(kn)R-1] 2, and v(, n) to the eigen- 
~n+O -, 2 �9 -~ - �9 .- �9 value P~R R ]. This basis affords the possibihty of rapldly solving the Cauchy problem for a system of 

viscous fluid motion equations in a sphere in a Stokes linearization by using the Fourier method. 
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