Let Ω be a domain in R^{3} containing the origin and bounded by the smooth surface S with unit external normal vector n. The vector field v, smooth in the class C^{1} in Ω and continuous in $\bar{\Omega}$ for which

$$
\begin{align*}
& \mathbf{r o t v}=\lambda \mathbf{v} \tag{1}\\
& \left.\mathbf{v} \cdot \mathbf{n}\right|_{\mathbf{S}}=0 \tag{2}
\end{align*}
$$

($\lambda=$ const $\neq 0$), is called a homogeneous helical flow. From (1) we obtain div $v=0$, hence, rot $\operatorname{rot} v=-\Delta v=\lambda^{2} v$, and the Cartesian components of the field v should be analytic functions in Ω. In particular, v decomposes into the Taylor series

$$
\begin{equation*}
\mathbf{v}=\sum_{p=0}^{\infty} \mathbf{v}_{p} \tag{3}
\end{equation*}
$$

which converges uniformly in some neighborhood of the origin. Here each v_{p} is a homogeneous polynomial vector field of degree p and divergence zero. The following lemmas describe the connection of the fields v_{p} to the harmonic polynomials:

LEMMA 1. If H_{n} is a homogeneous harmonic polynomial of degree n, then there exists a sequence $\left\{\mathrm{v}_{\mathrm{S}}, \mathrm{n}\right\}$ ($s=0,1,2 \ldots$) of homogeneous polynomial fields ($\operatorname{deg} v_{S,} n=n+s-1$) satisfying the conditions

$$
\begin{gather*}
\mathbf{v}_{0, n}=\operatorname{grad} H_{n} ; \tag{4}\\
\operatorname{rot} \mathbf{v}_{\mathbf{s}^{2} n}=\mathbf{v}_{\mathrm{s}-1}, n \text { as } s \geqslant 1 \tag{5}
\end{gather*}
$$

Proof. Let us give $v_{S, n}$ by the formulas

$$
\begin{gather*}
\mathbf{v}_{2 k, n}=C_{k n} r^{2 k-2}\left\{(n+2 k+1) r^{2} \operatorname{grad} H_{n}-2 k n H_{n} \mathbf{r}\right\} \tag{6}\\
\mathbf{v}_{2 k+1, n}=C_{k n} r^{2 h} \operatorname{grad} H_{n} \times \mathbf{r} \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
C_{k m}=\frac{\Gamma\left(n+\frac{3}{2}\right)}{n+1} \frac{(-1)^{k}}{2^{2 k} k!\Gamma\left(n+k+\frac{3}{2}\right)} ; \quad \mathbf{r}=\{x, y, z\} ; \quad r^{2}=x^{2}+y^{2}+z^{2} \tag{8}
\end{equation*}
$$

The property (4) is evident. The property (5) is verified by using standard vector analysis formulas and the formula

$$
\operatorname{rot}\left(\mathbf{v}_{p} \times \mathbf{r}\right)=(p+2) \mathbf{v}_{p}-\mathbf{r} \operatorname{div} \mathbf{v}_{p}
$$

which is valid for a homogeneous vector field v_{p} of degree p and obtained from the formula

$$
\operatorname{rot}\left(\mathbf{v}_{p} \times \mathbf{r}\right)=\left(\mathbf{r}_{1} \boldsymbol{\nabla}\right) \mathbf{v}_{p}-\left(\mathbf{v}_{p}, \nabla\right) \mathbf{r}+\mathbf{v}_{p} \operatorname{div} \mathbf{r}-\mathbf{r} \operatorname{div} \mathbf{v}_{p}
$$

taking into account that $(r, \nabla) v_{p}=p v_{p}$ (the Euler theorem about homogeneous functions), $\left(v_{p}, \nabla\right) r=v_{p}$, div $r=3$.
LEMMA 2. For any field v satisfying (1) and having the Taylor expansion (3), there exists a sequence $\left\{H_{n}\right\}(n=1,2,3, \ldots)$ of homogeneous harmonic polynomials of deg $H_{n}=n$, such that for all p

$$
\begin{equation*}
\mathbf{v}_{p}=\sum_{n=1}^{p+1} \lambda^{p-n+1} \mathbf{v}_{p-n+1, n}, \tag{9}
\end{equation*}
$$

where $\mathbf{v}_{\mathrm{p}-\mathrm{n}+1, \mathrm{n}}$ is the field constructed by means of H_{n} because of Lemma 1.
Proof. For $\mathrm{p}=0$ we have $\mathrm{v}_{0}=\operatorname{grad} \mathrm{H}_{1}=\mathrm{v}_{0,1}$, where the linear form H_{1} is defined uniquely. Let H_{n} be defined for $1 \leq n \leq p+1$ and let (9) hold. Let us define H_{p+2} so that the equality (9) would be satisfied by replacing p by $p+1$. Because of the uniqueness of the Taylor expansion we have

Chelyabinsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, March-April, 1979. Original article submitted March 29, 1978.

$$
\operatorname{rot}_{p+1}=\lambda \mathbf{v}_{p}=\sum_{n=1}^{p+1} \lambda^{p-n+2} \mathbf{v}_{p-n+1, n}
$$

Then according to Lemma 1

$$
\operatorname{rot}\left(\mathbf{v}_{p+1}-\sum_{n=1}^{p+1} \lambda^{p-n+2} \mathbf{v}_{p-n+2, n}\right)=\lambda \mathbf{v}_{p}-\lambda \mathbf{v}_{p}=0
$$

hence $\mathbf{v}_{p+1}-\sum_{n=1}^{p+1} \lambda^{p-n+2} \mathbf{v}_{p-n+2, n}=\operatorname{grad} H_{p+2}$, where the polynomial $\mathrm{H}_{\mathrm{p}+2}$ is defined uniquely by the requirement of homogeneity. We have

$$
\Delta H_{p+2}=\operatorname{div}\left(\mathbf{v}_{p+1}-\sum_{n=1}^{p+1} \lambda^{p-n+2} \mathbf{v}_{p-n+2, n}\right)=0
$$

hence, the polynomial H_{p+2} is harmonic, and we can set $\mathrm{v}_{0, \mathrm{p}+2}=\operatorname{grad} \mathrm{H}_{\mathrm{p}+2}$, from which $\mathbf{v}_{p+1}=\sum_{n=1}^{p+2} \lambda^{p-n+2} \mathbf{v}_{p-n+2, n v}$ The lemma is proved.

For each n let us define the vector field

$$
\begin{equation*}
\mathbf{v}^{(n)}=\sum_{\delta=0}^{\infty} \lambda^{s} \mathbf{v}_{\mathbf{s}, n_{\mathbf{s}}} \tag{10}
\end{equation*}
$$

where $\mathrm{v}_{\mathrm{S}, \mathrm{n}}$ is the field constructed in Lemma 1 by means of the harmonic polynomial H_{n} from Lemma 2. Formula (8) for $C_{k n}$ shows that the series (10) converges uniformly for all r. This series can be differentiated term by term, and hence $\operatorname{rot} v^{(n)}=\lambda v^{(n)}$, and $v^{(n)}$ can be evaluated explicitly. To do this, we note that $v^{(n)}=$ $\mathrm{v}_{+}^{(\mathrm{n})}+\mathrm{v}_{-}^{(\mathrm{n})}$, where the components are the "even" and "odd" parts of $\mathrm{v}^{(\mathrm{n})}$ corresponding to (6) and (7):

$$
\mathbf{v}_{+}^{(n)}=\sum_{k=0}^{\infty} \lambda^{2 k} \mathbf{v}_{2 h, n}, \mathbf{v}_{-}^{(n)}=\sum_{k=0}^{\infty} \lambda^{2 k+1} \mathbf{v}_{2 k+1, n}
$$

where $v_{+}^{(n)}=\lambda^{-1}$ rot $v_{-}^{(n)}$ so that it is sufficient to find $v_{-}^{(n)}$. It follows from (7) and (8) that

$$
\begin{equation*}
\mathrm{v}^{(n)}=\frac{\lambda \Gamma\left(n+\frac{3}{2}\right)}{n+1} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma\left(n+1-k+\frac{3}{2}\right)}\left(\frac{\lambda r}{2}\right)^{2 k} \operatorname{grad} H_{n} \times \mathbf{r}=A_{n} r^{-n-1 / 2} J_{n+1 / 2}(\lambda r) \operatorname{grad} H_{n} \times \mathbf{r} \tag{11}
\end{equation*}
$$

where $A_{n}=\lambda(n+1)^{-1} \Gamma(n+3 / 2) ; J_{n+1 / 2}(\lambda r)$ is the Bessel function.
Let $S_{r} \subset \Omega$ be a sphere of radius r with center at the origin. Let us show that

$$
\begin{equation*}
\int_{S_{r}} \mathbf{v} \cdot \mathbf{r} H_{n} d S=\int_{S_{r}} \mathbf{v}^{(n)} \cdot \mathbf{r} H_{n} d S \tag{12}
\end{equation*}
$$

To do this we examine the partial sum S_{m} of the series (3). By virtue of Lemma 2

$$
\mathbf{S}_{m}=\sum_{p=0}^{m} \mathbf{v}_{p}=\sum_{p=0}^{m} \sum_{n=1}^{p+1} \lambda^{n-n+1} \mathbf{v}_{p-n+1, n}=\sum_{n=1}^{m+1} \sum_{p=n-1}^{m} \lambda^{p-n+1} \mathbf{v}_{p-n+1, n}=\sum_{n=1}^{m+1} \sum_{s=0}^{n-n+1} \lambda^{s} \mathbf{v}_{s, n}=\sum_{n=1}^{m+1} \mathbf{S}_{m-n+1}^{(n)},
$$

where $S_{m-n+1}^{(n)}$ is the partial sum of the series (10). We have

$$
\mathbf{S}_{m} \cdot \mathbf{r}=\sum_{n=1}^{m+1} \mathbf{S}_{m-n+1}^{(n)} \cdot \mathbf{r}=\sum_{n=1}^{m+1} f_{m-n+1}(r) H_{n}
$$

where $f_{m-n+1}(r)$ are polynomials whose explicit form can be extracted from (6). From the last equality and the orthogonality of the spherical functions of different orders there follows that for $m \geq n-1$

$$
\begin{equation*}
\int_{S_{r}} \mathbf{S}_{m} \cdot \mathbf{r} H_{n} d s=f_{m-n+1}(r) \int_{S_{r}} I_{n}^{2} d s=\int_{S_{r}} \mathbf{S}_{m-n+1}^{(n)} \cdot \mathbf{r} H_{n} d S \tag{13}
\end{equation*}
$$

Let $\mathrm{r}<\varepsilon$, where ε is the radius of a sphere in which the series (3) converges uniformly. Then it is possible to pass to the limit as $m \rightarrow \infty$ under the integral sign in both sides of (13), and (12) is proved for $r<\varepsilon$. Since both sides of this equality are analytic functions of r, then it is true for all r for which $S_{r} \in \Omega$.

Now, let Ω be a sphere of radius R with center at the origin. By continuity, (12) is satisfied even for $r=R$, where it follows from (2) that both its sides equal zero. Let n be the first number for which $H_{n} \neq 0$. We have

$$
\mathbf{v}^{(n)} \cdot \mathbf{r}=\left(\mathbf{v}_{+}^{(n)}+\mathbf{v}_{-}^{(n)}\right) \cdot \mathbf{r}=\mathbf{v}_{+}^{(n)} \cdot \mathbf{r}
$$

since $v_{-}^{(n)} \cdot \mathbf{r}=0$ by virtue of (11). Furthermore, $v_{-}^{(n)} \cdot \mathbf{r}=\lambda^{-1} \operatorname{rot} \underline{v}_{-}^{(n)} \cdot \mathbf{r}=\lambda^{-1} \operatorname{div}\left(v_{-}^{(n)} \times r\right)$, from which we obtain by using (11)

$$
\mathbf{v}_{+}^{(n)} \cdot \mathbf{r}=n \Gamma\left(n+\frac{3}{2}\right) r^{-n-1 / 2} J_{n+1 / 2}(\lambda r) H_{n}
$$

The equality (12) becomes

$$
\begin{equation*}
n \Gamma\left(n+\frac{3}{2}\right) R^{-n-1 / 2} J_{n+1 / 2}(\lambda R) \int_{S} H_{n}^{2} d s=0 \tag{14}
\end{equation*}
$$

from which $J_{n+1 / 2}(\lambda R)=0$ and $\lambda=\mu_{k}^{(n)} R^{-1}$, where $\mu_{k}^{(n)}$ is the k-th root of the function $J_{n+1 / 2}(z)$.
Now let $m>n$. Since $J_{n+1 / 2}(z)$ and $J_{m+1 / 2}(z)$ have no common zeroes, then from an equality analogous to (14) with n replaced by m, we obtain $\int_{S} H_{m}^{2} d s=0$, from which $H_{m}=0$ for all $m \neq n$. Summarizing, $v=v(n)$, and the following theorem is proved:

THEOREM. Every homogeneous helieal flow in a sphere of radius R has the form $v=v(n)+v_{-}^{(n)}$, where $\mathbf{v}_{-}^{(n)}$ is given by (11) for $\lambda=\mu_{k}^{(n)} R^{-1}, v_{+}^{(n)}=\left[\mu_{k}^{(n)}\right]^{-1} R \operatorname{rot} v_{-}^{(n)}$, and H_{n} is an arbitrary homogeneous harmonic polynomial of degree n. In particular, $2 n+1$ linearly independent helical flows correspond to each value of $\lambda=$ $\mu_{k}^{(n)} R^{-1}$.

Remark 1. When H_{n} possesses axial symmetry, the solutions obtained are known (see [1], for instance). If $n=1$, then symmetry relative to the axis given by the vector grad H_{1} automatically holds. The streamline pattern in the meridian section is represented in [2] for $\mathrm{n}=\mathrm{k}=1$.

Remark 2. Let

$$
\begin{aligned}
& H_{n}^{m}=r^{n} P_{n}^{m}(\cos \theta) \cos m \varphi \quad \text { at } \quad 0 \leqslant m \leqslant n, \\
& H_{n}^{m}=r^{n} P_{n}^{|m|}(\cos \theta) \sin |m| \varphi \text { at }-n \leqslant m<0 .
\end{aligned}
$$

It can be shown that the family of vector fields $\left\{v_{+}^{(n)}, v_{-}^{(n)}\right\}$ for all possible $n, k \geq 1,|m| \leq n, \lambda=\mu_{k}^{(n)} R^{-1}, H_{n}=H_{n}^{m}$ is the orthogonal basis in the space $J^{0}(\Omega)$ [3]. The proper basis of the operator $\widetilde{\Delta}$ from [3] in the sphere Ω is also associated with the fields $v_{+}^{(n)}$ and $v_{-}^{(n)}$. It is formed by the fields $v_{-}^{(n)}$ for all possible $n, k, m, \lambda=\mu_{k}^{(n)} R^{-1}$ and the fields

$$
\mathbf{v}_{*}^{(n)}=\mathbf{v}_{+}^{(n)}-\Gamma\left(n+\frac{3}{2}\right) R^{-n-1 / 2} J_{n+1 / 2}\left(\mu_{k}^{(n+1)}\right) \operatorname{grad} H_{n}^{m}
$$

for all possible $n, k, m, \lambda=\mu_{k}^{(n+1)} R^{-1}$. Here $v_{-}^{(n)}$ corresponds to the eigenvalue $\nu\left[\mu_{k}^{(n)} R^{-1}\right]^{2}$, and $v_{k}^{(n)}$ to the eigenvalue $\nu\left[\mu_{\mathrm{k}}^{(\mathrm{n}+1)} \mathrm{R}^{-1}\right]^{2}$. This basis affords the possibility of rapidly solving the Cauchy problem for a system of viscous fluid motion equations in a sphere in a Stokes linearization by using the Fourier method.

LITERATURE CITED

1. A. G. Yarmitskii, "Sphere in a homogeneous helical flow," in: Hydroacromechanics and the Theory of Elasticity [in Russian], No. 19, Kharkov (1975).
2. A. G. Yarmitskii, "Ona three-dimensional analog of the Chaplygin vortex column," Prikl. Mekh. Tekh. Fiz., No. 5 (1974).
3. O. A. Ladyzhenskaya, Mathematical Questions of the Dynamics of a Viscous Incompressible Fluid fin Russian], Nauka, Moscow (1970).
